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Introduction: In the last 10 years the field of mitochondrial genetics has widened,
shifting the focus from rare sporadic, metabolic disease to the effects of
mitochondrial DNA (mtDNA) variation in a growing spectrum of human disease. The
aim of this review is to guide the reader through some key concepts regarding
mitochondria before introducing both classic and emergingmitochondrial disorders.

Sources of data: In this article, a review of the current mitochondrial genetics
literature was conducted using PubMed (http://www.ncbi.nlm.nih.gov/pubmed/).
In addition, this review makes use of a growing number of publically available
databases including MITOMAP, a human mitochondrial genome database
(www.mitomap.org), the Human DNA polymerase GammaMutation Database
(http://tools.niehs.nih.gov/polg/) and PhyloTree.org (www.phylotree.org), a
repository of global mtDNAvariation.

Areas of agreement: The disruption in cellular energy, resulting from defects in
mtDNA or defects in the nuclear-encoded genes responsible for mitochondrial
maintenance, manifests in a growing number of human diseases.

Areas of controversy: The exact mechanisms which govern the inheritance of
mtDNA are hotly debated.

Growing points: Although still in the early stages, the development of in vitro
genetic manipulation could see an end to the inheritance of the most severe
mtDNA disease.
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Mitochondria

The mitochondrion is a highly specialized organelle, present in almost all
eukaryotic cells and principally charged with the production of cellular
energy through oxidative phosphorylation (OXPHOS). In addition to
energy production, mitochondria are also key components in calcium sig-
nalling, regulation of cellular metabolism, haem synthesis, steroid synthe-
sis and, perhaps most importantly, programmed cell death (apoptosis).1
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However, the simplistic elegance of biochemical ATP production belies a,
complex, synergistic relationship between two genomes: the mitochon-
drial genome (mtDNA) and the nuclear genome (nDNA). The aim of this
review is to introduce these two genomes and shed light on the clinical
problems arising when communication breaks down. The emphasis is on
the basic science underpinning mitochondrial diseases. Clinical aspects
are not considered in detail because they have recently been reviewed
elsewhere in open-access publications.2–4

mtDNA

MtDNA is the only source of critical cellular proteins outside of the eu-
karyotic nucleus. In the majority of eukaryotes, mtDNA is organizsed as
a circular, double-stranded DNA molecule (Fig. 1).5 The strands are dis-
tinguished by their nucleotide composition: heavy (H-strand) is guanine
rich, compared with the cytosine-rich light strand (L-strand). The length
varies between species (15 000–17 000 bp), but is fairly consistent in
humans (∼16 569 bp).5 MtDNA is a multi-copy DNA, with cells contain-
ing between 100 and 10 000 copies of mtDNA (dependent upon cellular
energy demand).

Fig. 1 Mitochondrial DNA. Schematic diagram of the 16.6-kb, circular, double-stranded
mtDNA molecule, where the outer circle represents the heavy strand and the inner circle the
light strand. Shown are the genes encoding the mitochondrial RC: MTND1–6, MTCOI–II,
MTATP6 and 8 and MTCYB; the two ribosomal RNAs (green boxes) and each of the 22 tRNAs
(red spheres).

P. F. Chinnery and G. Hudson

136 British Medical Bulletin 2013;106



Structure

MtDNA contains 37 genes, 28 on the H-strand and 9 on the L-strand.
Thirteen of the genes encode one polypeptide component of the mito-
chondrial respiratory chain (RC), the site of cellular energy production
through OXPHOS. Twenty-four genes encode a mature RNA product:
22 mitochondrial tRNA molecules, a 16 s rRNA (large ribosomal
subunit) and a 12 s rRNA (small ribosomal subunit).5 Unlike its nDNA
counterpart, mtDNA is extremely efficient with ∼93% representing a
coding region. Unlike nDNA, mtDNA genes lack intronic regions and
some genes, notably MTATP6 and MTATP8, have overlapping regions.
Most genes are contiguous, separated by one or two non-coding base
pairs. mtDNA contains only one significant non-coding region, the dis-
placement loop (D-loop).5 The D-loop contains the site of mtDNA repli-
cation initiation (origin of heavy strand synthesis, OH) and is also the site
of both H-strand transcription promoters (HSP1 and HSP2).
The mitochondrial genetic code differs slightly from nuclear DNA

(nDNA). MtDNA uses only two stop codons: ‘AGA’ and ‘AGG’6 (com-
pared with ‘UAA’, ‘UGA’ and ‘UAG’ in nDNA), conversely ‘UGA’
encodes tryptophan. To compensate UAA codons have to be introduced
at the post-transcriptional level. In addition ‘AUA’, isoleucine in nDNA,
encodes for methionine in mtDNA.

Inheritance

Prevailing theory suggests that mtDNA is maternally inherited, with
mtDNA nucleoids the unit of inheritance. During mammalian zygote for-
mation, sperm mtDNA is removed by ubiquitination, likely occurring
during transport through the male reproductive tract.7 Consequently, the
mtDNA content of the zygote is determined exclusively by the previously
unfertilized egg.
To date only a single case of paternal transmission in humans has been

recorded.8 However, paternal transmission in other animals is both
common and recurring. Theory suggests that the lack of paternal inherit-
ance is due to either (i) a dilution effect; sperm contain only 100 copies of
mtDNA, compared with 100 000 in the unfertilized egg, (ii) selective ubi-
quitination of paternal mtDNA or (iii) the ‘mtDNA bottleneck’ excludes
the ‘minor’ paternal alleles.7 The advent of deep, next generation sequen-
cing, allowing mtDNA can be sequenced at great depths (>20 000 fold)
may enable researchers to revisit this phenomenon.

Homoplasmy and heteroplasmy

Cells contain thousands of molecules of mtDNA;9 and in the majority of
cases their sequence is identical, known as homoplasmy. However, an
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inefficient mtDNA repair, a localized oxidative environment and
increased replication10 make mtDNA mutation frequent. The polyploid
nature of mtDNA means that mutations often co-exist with their wild-
type counterpart in various proportions (termed heteroplasmy). The pro-
portion of mutant has important consequences in understanding mito-
chondrial disease (discussed later).11

nDNA andmitochondrial function

According to recent data the mitochondrial proteome is estimated at
∼1500 proteins.12 Mitochondria are dependent upon the nuclear genome
for the majority of the OXPHOS system and also for maintaining and
replicating mtDNA as well as organelle network proliferation and
destruction (Fig. 2).

OXPHOS system

To date, 92 structural OXPHOS subunit genes have been identified: 13
encoded by mtDNA (Fig. 1) and 79 encoded by the nuclear genome.
Briefly, complex I (NADH:ubiquinone oxidoreductase), the largest of the
RC components, consists of 44 subunits: 14 enzymatic ‘core subunits’
(7 from mtDNA and 7 from nDNA)13 and a further 30 nDNA accessory
subunits thought to maintain complex stability.14 Complex II (succinate:

Fig. 2 Interaction between nDNA and mtDNA. Cartoon demonstrating the complex interaction
between genes encoded by nDNA and the processes they control in the mitochondrion.
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ubiquinone oxidoreductase) is encoded entirely by nDNA (four subu-
nits). Complex III (ubiquinol:cytochrome c oxidoreductase) contains 11
subunits, 1 encoded by mtDNA (MTCYB) and 10 encoded by nDNA.15

Complex IV (cytochrome c oxidase) consists of three mtDNA-encoded
subunits and a further 11 nDNA-encoded subunits. Finally, complex V
(F0F1-ATP synthase) comprises 19 subunits, 2 encoded by mtDNA and
the remaining 17 encoded by nDNA.
In addition, nDNA encodes over 35 proteins required for the RC as-

sembly: complex I = 11 nDNA assembly factors,16 complex III = 2,15

complex IV = 1817 and complex V = 4.18

mtDNA replication

Unlike nDNA, mtDNA replication is not governed by the cell cycle
(eukaryotic cell division) and is continuously recycled. MtDNA replica-
tion and integrity maintenance is handled entirely by the nDNA. In
eukaryotes, mtDNA is replicated in a ‘replisome’ (a DNA/protein
complex making up the replication machinery) by a trimeric protein
complex composed of a catalytic subunit: polymerase gamma, a 140 kDa
DNA polymerase encoded by POLG and two 55 kDa accessory subunits,
encoded by POLG2.19 This enzyme complex performs three activities,
DNA polymerase activity, 30-50 exonuclease/proofreading activity and a
50dRP lyase activity (required for enzymatic DNA repair).
In addition, the replisome also includes the mitochondrial single-

stranded binding protein (encoded bymtSSB), which is involved in stabiliz-
ing single-stranded regions of mtDNA at replication forks, enhancing poly-
merase gamma activity. Twinkle is a 50-30 DNA helicase, which unwinds
double-stranded mtDNA, facilitating mtDNA synthesis, as well as acting
as a mtDNA primase (an enzyme required to prime nucleotide synthesis).19

Several topoisomerases have been indentified in humans, including the
mitochondrial topoisomerases 1 (encoded by TOP1mt) and IIIα (encoded
by TOP3a). Finally, the synergy between mitochondrial transcription
factor A (encoded by TFAM) and mtDNA copy number suggests that
TFAMmay act as an mtDNA chaperone (a protein that assists the function
of another protein) protecting it against oxidative damage.

mtDNA arrangement

Like its nDNA counterpart, mtDNA is also packaged in protein–DNA
complexes, known as nucleoids.20 MtDNA nucleoids are associated with
the inner mitochondrial membrane, spaced evenly along the cristae. In
addition to a single mtDNA molecule,21 mtDNA nucleoids contain a
number of proteins.20 Principally the site of mtDNA replication, it is
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unsurprising that mtDNA nucleoids contain the protein machinery
required for DNA replication, transcription, repair and packaging, in-
cluding the mtDNA polymerase POLG, its accessory subunit POLG2,
the activator of mtDNA transcription (encoded by TFAM) as well as
mtDNA helicases and binding proteins (twinkle and mtSSB, respective-
ly).20 In addition, mtDNA nucleoids contain chaperone proteins
(HSP90-β and HSP70) required for mtDNA stability.

Transcription and translation

Transcription of mtDNA is ‘prokaryotic like’ and was thought of a two-
component system involving a protein complex containing the mitochon-
drial RNA polymerase (POLRMT) and two transcription factors
(TFB1M and 2M).22,23 However, recent research indicates that TFB1M
does not modulate mtDNA transcription in the presence of TFB2M,
rather it acts as a dimethyltransferase which stabilizes the small subunit
of the mitochondrial ribosome. RNA transcription is regulated by mito-
chondrial transcription factor A (TFAM).24

Briefly, each strand is transcribed as a polycistronic precursor mRNA
molecule (i.e. the mRNA contains all of the genes in one molecule).
Light-strand transcription is initiated from the light-strand promoter;
however, heavy-strand transcription initiates from two heavy strand pro-
moters: HSP1 and HSP2 (Fig. 1).25 Transcript elongation is performed by
POLRMT, enhanced by both ‘transcription elongation factor mitochon-
drial’ (TEFM) and termination of mature transcripts is carried out by
mitochondrial termination factor 1 (MTERF1).25

Translation of the 13 mtDNA protein coding genes occurs in the mito-
chondria. The mitoribosomes are partly coded by mtDNA (MTRNR1
and MTRNR2, Fig. 1), but require a further 81 nDNA proteins.
Translation is initiated by two mitochondrial initiation factors: mtIF1
and mtIF3.26,27 mtIF3 begins initiation by dissociating the ‘mitoribo-
some’ (the mitochondrial ribosomes) allowing assembly of the initiation
complex.28 MRNA is then bound to the small subunit, aligning the start
codon to the peptidyl site of the mitoribosome. Peptide elongation is con-
trolled by a number of nuclear-encoded genes, including mitochondrial
elongation factor Tu (mtEFTu),29,30 which binds the tRNA to the mitori-
bosome and mitochondrial elongation factor G1 (mtEFG1), required to
move the newly added amino acid along one position and allowing
amino acid inclusion.31 Translation termination is carried out solely by
mitochondrial release factor 1a (mtRF1a),32 which recognizes the stop
codons (UAA and UAG)33 and triggers hydrolysis of the bond between
the terminal tRNA and the nascent peptide.
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Controlling mitochondrial network dynamics

Mitochondria are often depicted as distinct organelles; however, they ac-
tually form a complex reticulum that is undergoing continual fusion and
fission (Fig. 2).34 It is likely that fusion has evolved as a mechanism to
promote intermictochondrial cooperation—allowing the sharing and dis-
semination of mtDNA and mitochondrial proteins. Fission promotes
mitochondrial compartmentalization,34 a mechanism that is needed to
distribute mitochondria during cell division. Mitochondrial network dy-
namics, much like mtDNA replication, is controlled completely by
nDNA, although likely involves mtDNA–nDNA communication.34

Mitochondrial fusion
The principle player in mitochondrial fusion is mitofusin (Mfn) and
mammalian mitochondria contain two similar mitofusin proteins: Mfn1
and Mfn2 (Fig. 2),34 sharing 80% sequence homology. Studies indicate
that both Mfn1 and Mfn2 uniformly localize to the mitochondrial outer
membrane and overexpression leads to peri-nuclear clustering on mito-
chondria.34 Mitochondrial fusion is also dependent upon OPA1 expres-
sion (Fig. 2),34 where inhibition of gene expression causes an increase in
mitochondrial fragmentation, conversely the overexpression of OPA1
breaks the network into spheres.

Mitochondrial fission
DNM1L, dynamin 1 like, controls mitochondrial fission in mammalian
cells (Fig. 2).34 DNM1L codes for a principally cytosolic protein;
however, it also localizes to fission sites on the mitochondria. Similar to
Mfn1, the overexpression of ‘mutant’ DNM1L results in a breakdown of
mitochondrial networks. Due to its dynamin similarity, two different
functions have been proposed forDNM1L. It has been hypothesized that
DNM1L may mechanically mediate membrane fission through GTP hy-
drolysis; alternatively, it may act as a signalling molecule, conscripting
and activating separate fission enzymes such as Dnm1: the yeast homo-
logue of Drp1.

Areas of agreement

Mitochondrial disease

An area where all mitochondrial researchers would agree is the capacity
for mitochondrial dysfunction to manifest as disease. Mitochondrial
disease is principally a chronic loss of cellular energy, where a failure to
meet cellular energy demand results in a clinical phenotype. The clinical
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spectrum of mitochondrial disease is diverse (Fig. 3); however, tissues
where there is a high metabolic demand, such as the central nervous
system (CNS) or heart, are typically affected.
The broad clinical spectrum of mitochondrial dysfunction, coupled

with the heterogeneity of mtDNA variation, makes the prevalence of
mitochondrial DNA (mtDNA) difficult to calculate. Estimates, based on
clinical observations, indicate that as many as 1 in 5000 people in the
North East of England have manifested mitochondrial disease,35 with
similar figures reported in other parts of the world.36–38

Identifying and diagnosing mitochondrial genetic disease: general principles

Mitochondrial dysfunction should be considered in the differential diag-
nosis of any progressive, multisystem, disorder. However, clinical diagno-
sis can be difficult if patients do not present with ‘classical mitochondrial’
disease (see later).
A detailed family history is important; a clear maternal inheritance

(without male transmission) indicates a primary mtDNA defect, whilst an
autosomal inheritance pattern is indicative of nDNA interaction. In many

Fig. 3 Clinical spectrum of mitochondrial disease. Schematic diagram showing the organ and
corresponding disease affected by mitochondrial dysfunction.
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cases blood and/or CSF lactate concentration,39 neuroimaging,40,41

cardiac evaluation and muscle biopsy for histological or histochemical
evidence can indicate mitochondrial disease. However, establishing a mo-
lecular genetic diagnosis is preferred.
Molecular genetic testing can be carried out on DNA extracted from

blood (useful for the identification of some mtDNA and nDNA muta-
tions),42,43 but DNA extracted from the affected tissue is preferred
(as pathogenic mtDNA mutations are often not detectable in blood).44

Southern blot analysis can be used to identify mtDNA rearrangements
and ‘common’ mutations can be targeted by Sanger sequencing of either
mtDNA or nDNA.

The genetics of mitochondrial disease

The complex interaction between the two cellular genomes means mito-
chondrial disease can arise through either (i) a primary mtDNA defect or
(ii) a defect in a nuclear-encoded mitochondrial protein.

mtDNA and disease

Understanding mtDNAvariation
mtDNA integrity is constantly attacked by mitochondrial reactive oxygen
species (ROS) generated during cellular OXPHOS.45 ROS are potent
genotoxic agents, which cause mutagenic and cytotoxic effects. The prox-
imity of mtDNA to the site of mitochondrial ROS production (principally
complexes I and III of the RC) is the major cause of oxidative lesions and
mtDNA instability and is directly responsible for the higher nucleotide
instability when compared with nDNA.
Despite being packaged in mitochondrial nucleoids and possessing DNA

repair pathways evolved to cope with oxidative damage, including base ex-
cision repair mechanisms,46 mtDNAmutation rates are significantly higher
than nDNA. Mutation creates two distinct classes of mtDNA variant:
(i) single-base-pair variants and (ii) mtDNA rearrangements (deletions and
insertions). Single-base-pair variants are typically inheritable and are either
common in the populace (as proposed neutral variants) or enriched in indi-
viduals with disease (as mtDNA mutations). Understanding the complex
nature of mtDNAvariation is critical to understanding its affect on disease
and there are a few key points that must be understood before assessing an
mtDNAvariant.

Consequences of mtDNA heteroplasmy
MtDNA heteroplasmy (described earlier) has a complex relationship
with disease. The clinical expression of a heteroplasmic pathogenic

Mitochondrial genetics

British Medical Bulletin 2013;106 143



mtDNA mutation is directly correlatable with the relative proportion of
wild-type and mutant genomes.47 For common point mutations, a typical
threshold of 80–90% mutant is required to manifest as disease at the
cellular level,48,49 and tissue levels correlate loosely with the severity of
the clinical phenotype. However, there is emerging evidence that muta-
tion levels can change over time, increasing in post-mitotic tissues, such
as brain and muscle and decreasing in mitotic tissues including blood.
This can present a challenge when interpreting some clinical molecular
genetic tests.44,50,51

Common mtDNAvariation
Evolutionarily, common inherited mtDNA mutations have created stable
population subgroups separated by common sequence variation known
as haplogroups. Many of the major sub-divisions occurred over 10 000
years ago, developing as humans migrated into new geographic areas.
Over 95% of Europeans belong to 1 of 10 major haplogroups, H, J, T, U,
K (a subgroup of U), M, I, V, W and X, with each haplogroup defined
by specific sequence variants within the population.52 These common,
inherited, mtDNA variants are usually not heteroplasmic, and due to
their selection neutrality have become fixed in the population. However,
different haplogroups have been associated with a variety of human dis-
eases, including primary mitochondrial disorders such as Leber’s heredi-
tary optic neuropathy (LHON, an age-related loss of vision), where
background mitochondrial haplogroup has a direct, functional, effect
on the RC protein complex assembly;53 but has expanded to include
age-related neurodegenerative disorders such as Parkinson’s disease
(PD)54 Alzheimer’s disease55,56 and age-related macular degeneration.57

Rare mtDNAvariation
Rare, inherited, point mutations are a major cause of disease in humans,
with an estimated incidence of 1 in 5000.58 They primarily occur in
protein coding and tRNA genes and ultimately result in a reduction of
cellular energy, through either a reduction in mitochondrial RC enzyme
activity or an impairment of mitochondrial protein synthesis.59 Unlike
common inherited variants, rare point mutations are often heteroplasmic.
In contrast to point mutations, primary mitochondrial rearrangements

of mtDNA are not inheritable; they are primarily, sporadic, large-scale
deletions, typically heteroplasmic and usually result in disease. To date
around 120 different mtDNA deletions have been identified in patients
with mitochondrial disease.60 Similarly to mtDNA point mutations, the
ratio of deleted versus ‘wild-type’ molecules is critical to disease aeti-
ology, with mtDNA deletions manifesting disease at a lower hetero-
plasmic threshold (∼50–60%).61 The exact mechanism of deletion
formation is under debate and current research indicates two likely
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models of deletion formation: (i) replication error and (ii) mtDNA repair
inefficiency.62,63

‘Classical’mtDNA diseases
LHON is a common cause of inherited blindness that typically presents
with bilateral, painless, sub-acute visual failure in young adult males.
LHON was the first maternally inherited disease to be associated with an
mtDNA point mutation.64 Today, clinical diagnosis is usually confirmed
by molecular genetic analysis for one of three ‘common’ mtDNA muta-
tions, which all affect genes coding for complex I subunits of the RC:
m.3460G>A, m.11778G>A and m14484T>C.65 Mitochondrial dysfunc-
tion causes a specific loss of retinal ganglion cells,66 whilst preserving the
remaining retinal layers. The optic nerve also shows characteristic degen-
eration and an accumulation of mitochondria suggesting an impairment
of axoplasmic transport. LHON mutations are typically homoplasmic;
however, not all patients harbouring a pathogenic LHON mtDNA muta-
tion develop visual failure. Studies of LHON have identified common
mtDNA variants that may modulate LHON expression;67,68 additionally
environmental factors, such as cigarette smoke69 and oestrogen levels
may play a role.70 However, the majority of research has focused on the
identification of a nuclear-encoded susceptibility allele.67,71–74

Non-syndromic and aminoglycoside-induced sensorineuronal hearing
loss is associated with m.1555A>G, a homoplasmic point mutation in the
12sRNA gene.75 The variant alters a highly conserved region of
12sRNA, mutating the molecule to more closely resemble its bacterial
homologue. In vitro experiments on m.1555A>G mutant cell lines
demonstrated that exposure to aminoglycoside would impair growth;
however, not all symptomatic individuals have been exposed to amino-
glycoside.75

Surprisingly, given that they make up only 5% of mtDNA, the vast
majority of pathogenic mtDNA point mutations occur in the tRNA genes
(Fig. 1).76,77 In addition, pathogenic tRNA mutations are typically het-
eroplasmic.
Mitochondrial encephalomyopathy, lactic acidosis and stroke-like epi-

sodes (MELAS) is typically a childhood, multisystem disorder. Patients
commonly manifest with generalized tonic-clonic seizures, recurrent
headaches, anorexia with recurrent vomiting and postlingual hearing
loss,78–80 but can manifest with impaired: motor ability, vision and
mental acuity due to the cumulative effect of multiple stroke-like epi-
sodes. MELAS is commonly (80% of cases) caused by a A>G transition
at m.3243 in MTTL1,81 but is also associated with variants in
MTND5.82 Biochemically, MELAS manifests as defects of complex I and
IV activity; however, care must be taken when interpreting the findings as
biochemical results can often appear normal.
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Myoclonus epilepsy with ragged red fibres (MERRF) is a neuromuscu-
lar disorder primarily caused by m.8344A>G in MTTK.83 Clinically,
patients with m.8344A>G present with myoclonus, epilepsy, muscle
weakness, cerebellar ataxia and dementia, although neurological symp-
toms can develop with age.83 Clinical severity is correlated with patient
heteroplasmy with high levels of mutant mtDNA often causing, severe
complex I or IV deficiency and occasionally a combined complex I and IV
deficiency. Much like MELAS, the genotype–phenotype correlation of
m.8344A>G can be extended beyond MERRF. M.8344A>G has been
identified is diverse mitochondrial phenotypes such as Leigh’s syndrome.
m.7472insC, affecting MTTS (Fig. 1), was first identified in a large

Italian family presenting with hearing loss, ataxia and myoclonus. This
mutation was later found in several unrelated families, all showing a wide
clinical spectrum, including isolated hearing loss, ataxia and MERRF.
This mutation has been found at increasing frequencies in families pre-
senting with maternally inherited hearing loss.
Pathogenic rearrangements of mtDNA are typically large-scale dele-

tions and to date over 120 different pathogenic mtDNA deletions have
been identified.60 As described previously, mtDNA deletions are typically
sporadic and not inheritable. Clinical severity is directly correlatable with
the level and tissue distribution of the rearrangement and mitochondrial
dysfunction is simply a result of the removal of key mitochondrial genes.
Homoplasmic tRNA gene loss is particularly detrimental as mitochon-
dria cannot synthesize a functional OXPHOS system. mtDNA deletions
are associated with three main clinical phenotypes: Kearns–Sayre syn-
drome (KSS),84 sporadic progressive external ophthalmoplegia (PEO)85

and Pearson’s syndrome.86

KSS is an early onset, sporadic, disorder characterized by PEO and
pigmentary retinopathy; however, cases can also present with cerebel-
lar syndrome, heart block, diabetes and shortness of stature.
Mitochondrial dysfunction manifests as ragged red fibres (RRFs), an
accumulation of dysfunctional mitochondria in the sub-sarcolemmal
region of a muscle fibre (detectable when a muscle section is stained
with Gomori trichrome stain).85

Large-scale deletions and duplications of mtDNA are a known cause of
Pearson’s bone-marrow–pancreas syndrome, a rare infant disorder char-
acterized by infantile sideroblastic anaemia and occasionally including
severe exocrine pancreatic insufficiency.86

nDNAvariation and mitochondrial disease

Nuclear–mitochondrial disease can be classified into four distinct groups:
(i) disorders resulting from a reduction in mtDNA stability; (ii) disorders
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resulting from mutations in nuclear-encoded components or assembly
factors of the OXPHOS system; (iii) disorders resulting from mutations
affecting mitochondrial translation and (iv) disorders due to defects in
genes controlling mitochondrial network dynamics.

Disorders resulting from a reduction in mtDNA stability
A growing number of disorders have become associated with mtDNA in-
stability, primarily a result of impaired mtDNA replication. Mutations
in POLG, the gene encoding the only mtDNA polymerase, are by far
the commonest cause of mtDNA stability disorders. Mutations in the
POLG gene can cause either point mutations (through impaired mtDNA
proofreading) or deletions (through impaired polymerase activity) in
mtDNA.19 The first pathogenic mutations in POLG were identified in
families with autosomal dominant PEO (adPEO); however, the spectrum
of disease associated with POLG mutations has been expanded to
include autosomal recessive PEO, adult onset ataxia, Alpers’ syndrome,
parkinsonism and premature ovarian failure.87

adPEO, characterized by multiple mtDNA deletions, is caused by muta-
tions in PEO1, which encodes ‘twinkle’ the putative mitochondrial heli-
case.88 It is thought that twinkle mutations result in an accumulation of
replication intermediates, causing replication stalling and eventually de-
pletion. adPEO is also associated with mutations in ANT1,89 the gene
coding adenine nucleotide translocase. Mutations in ANT1 impair ADP–
ATP exchange through the mitochondrial membrane, causing a nucleo-
tide imbalance (affecting replication) and a severe reduction in cellular
energy.
In addition to structurally altering mtDNA, several disorders have been

identified that are caused by a reduction in mtDNA copy number.19

Alpers syndrome, characterized by diffuse and progressive cerebral
atrophy,90 has been associated with mutations in POLG,91,92 which
cause impairment of the replicative machinery.93

Recessive mutations in thymidine phosphorylase cause mitochondrial
neurogastrointestinal encephalopathy, characterized by mtDNA deple-
tion, multiple deletions and point mutations. mtDNA depletion has also
been identified in early onset hypotonia with myopathy and hepatic
involvement, caused by mutations in either thymidine kinase (TK2) or
deoxyguanosine kinase (DGUOK).94 Mutations in both of these genes
cause a reduction in the mtDNA nucleotide pooling, reducing replication
efficiency.

Disorders resulting frommutations in nuclear-encoded components
or assembly factors of the OXPHOS system
Isolated complex I deficiency is by far the commonest biochemical defect
found in mitochondrial disorders; however, it is also the most complex
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aetiology and clinical spectrum.95 Complex I deficiency is associated with
a broad range of clinical phenotypes ranging from lethal neonatal disease
to adult onset neurodegenerative disorders.96,97 A high level of genetic
heterogeneity, coupled with weak genotype–phenotype correlations,
makes it difficult to predict the genetic basis on pure clinical grounds.95

This is important because of the different inheritance patterns and differ-
ent natural histories of the different genetic causes. However, some
patterns are starting to emerge.
There are at least 46 nuclear-encoded subunits of complex I (compared

with 7 mtDNA encoded subunits) and so it is unsurprising that nDNA
mutations have been identified in 14 of the structural subunits.
Pathogenic mutations in NDUFS1,98 NDUFS3,95,99 NDUFS4,100

NDUFS7,101 NDUFS8,102 NDUFV1,98,103 NDUFA10,104 NDUFB395

and NDUFA2105 typically manifest as Leigh or Leigh-like syn-
dromes.60,106 Conversely, mutations in NDUFS2,107 NDUFS6,108

NDUFV2,109 NDUFA1, NDUFA11110 and ACAD9111 are typically
associated with hypertrophic cardiomyopathy and encephalopathy. In
addition, mutations in complex I assembly proteins can manifest as
disease: Leigh syndrome (NDUFAF2 and NDUFAF5),112,113 encephal-
opathy (NDUFAF4)114 and cardioencephalomyopathy (NDUFAF1).115

Complex II is completely encoded by nDNA and is composed of four
polypeptide subunits: SHD-A, -B, -C and -D. Mutations in SHD-A are
rare, but are associated with Leigh’s syndrome. Surprisingly, mutations in
SHD-B, -C and -D appear to be a common cause of inherited paragaglio-
mas and phaeochromocytomas.116

Complex III deficiency typically causes a severe multisystem early onset
disorder, which is recessively inherited and rare.117,118 identified mutations
in BCS1l, a complex III assembly protein, presenting with neonatal prox-
imal tubulopathy, hepatic involvement and encephalopathy. Subsequently,
a deletion in human ubiquinone–cytochrome c reductase binding protein
of complex III (UQCRB) was identified in a consanguineous family pre-
senting with hypoglycaemia and lactic acidosis;119 and a missense muta-
tion was identified in UQCRC, a ubiquinone-binding protein, in a large
consanguineous Israeli-Bedoiun kindred.120 More recently, a mutation in
TTC19 (a complex III structural subunit gene) was identified in individuals
with a progressive neurodegenerative disorder in late infancy,121 expanding
the phenotype of complex mutations beyond early infant disorders.
Mutations in complex IV result in severe, typically fatal, infantile disease

and to date mutations in four complex IV structural subunits have been
identified. A homozygous mutation in COX6BI, identified in brothers
from a consanguineous Saudi Arabian family, presented with gait instabil-
ities visual disturbances, progressive neurological deterioration and leuko-
dystrophic brain changes.122 Mutations in COX10, a homologue of yeast
haem A:farneslytransferase, are associated with Leigh syndrome123,124 and
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a multisystem disorder.123 Atypically, mutations in COX7B125 are asso-
ciated with facial dysmorphisms and congenital abnormalities,126 and a
single mutation in the structural subunit gene, COX4I2, was identified in
adult Arab Muslim patients with exocrine pancreatic insufficiency, dysery-
thropoietic anaemia and calvarial hyperostosis.127

In contrast, a number of mutations have been identified in complex IV
assembly factors. Complex IV assembly gene disorders include SURF1
(Surfeit locus protein 1), associated with Leigh Syndrome;128,129

C12ORF62 (chromosome 12 open reading frame 62), associated with
fatal, neonatal, mitochondrial IV deficiency;130 COA5 (cytochrome c
oxidase assembly factor 5), associated with neonatal hypertrophic cardio-
myopathy131 and FASTKD2, associated with cytochrome c oxidase-
defective encephalomyopathy.132

Mutations in nDNA-encoded complex V subunit genes also appear
very rare. A mutation in ATP5E (ATP synthase, H+ transporting, mito-
chondrial F1 complex, epsilon subunit) was identified in an Austrian
woman with complex V deficiency,133 and a single gene defect has been
identified in the complex V assembly factor gene ATPAF2, resulting in
impaired complex V activity.134

Disorders resulting frommutations affecting mitochondrial translation
Several nDNA mutations have been identified which influence the effi-
ciency of mitochondrial translation. Mitochondrial ribosomal protein
S16 (MRPS16) and mitochondrial ribosomal protein S22 (MRPS22) are
components of the mitoribosome. Mutations in these genes are known to
cause severe, infantile, lactic acidosis, developmental defects in the brain,
and facial dysmorphisms (MRPS16) and fatal neonatal hypertrophic
cardiomyopathy and kidney tubulopathy (MRPS22).135

Mutations in PUS1, peudorine synthase 1, have been shown to cause
myopathy, lactic acidosis and sideroblastic anaemia.136 The mutation, in
the catalytic core of the protein, is thought to disrupt the conversion of
uridine to pseudouridine, required for tRNA synthesis.

Disorders due to defects in genes controlling mitochondrial
network dynamics
Mutations in OPA1 are primarily a cause of optic atrophy,66 but add-
itional phenotypes, such as deafness and neuromuscular disease, have
also been seen. Interestingly, mutations inOPA1 also appear to cause the
formation of mtDNA deletions, indicating that Opa1 is also important to
mtDNA maintenance.
Much like OPA1, defects in MFN2 cause a disturbance of mtDNA

maintenance through impairment of mitochondrial network dynamics.66

Mutations in MFN2 are typically associated with Charcot-Marie-Tooth
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disease (CMT2A) and hereditary motor and sensory neuropathy (CMT
with HMSN type VI).66

DNM1L (dynamin 1-like), another GTPase, is required for fission of
mitochondria.137 To date, only a singleDNM1L has been identified in an
infant presenting with both defective mitochondrial and peroxisomal
fission.138 The patient presented in the first days of life with severe micro-
cephaly, abnormal brain development, optic atrophy with hyperplasia
and lactic acidemia.138

Areas of controversy?

The mitochondrial bottleneck

Mutations in mtDNA are often heteroplasmic, with severity correlating
with increasing percentage of mutant. Observations indicate that the
amount of a variant inherited from a heteroplasmic mother varies between
offspring.139,140 This is important when investigating disease aetiology, as
an asymptomatic mother, with a sub-clinical heteroplasmy level, can give
birth to children with significantly higher levels of an mtDNAmutation.
The ‘mitochondrial bottleneck theory’ attempts to explain this phe-

nomenon.140 Briefly, the reduction of mtDNA during early development
‘redistributes’ mtDNA to daughter cells (effectively sharing mtDNA
content amongst daughter cells). Oocyte maturation is associated with
the rapid replication of mtDNA. This reduction-amplification leads to
a purportedly random shift in mtDNA mutational load between cells.
Researchers agree that the bottleneck is due to a rapid reduction in
mtDNA levels during embryonic development; however, the exact mech-
anism of segregation is hotly debated. There are currently three leading
theories of the mtDNA bottleneck mechanism:140 (i) variation in hetero-
plasmy is due to an unequal segregation of mtDNA during cell division,
(ii) variation in heteroplasmy is due to an unequal segregation of mtDNA
nucleoids during cell division and (iii) variation in heteroplasmy is due to
the selective replication of a specific sub-population of mtDNA.

Growing points

Assigning variant causality

Optimal mitochondrial function requires the synergistic cooperation of
both mtDNA and nDNA; hence, the investigation of dysfunction requires
the interrogation of both genomes. Correctly determining the pathogen-
icity of potential mutants (in either genome) is critical to understanding
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mitochondrial disease. This underpins the genetic counselling and subse-
quent prenatal diagnosis of mitochondrial disorders.
Despite the complexity of both mtDNA point mutations and deletions,

as well as the potential for heteroplasmy, assigning pathogenicity to
mtDNA variants is analogous to nDNA mutations and is comprehensive-
ly described by DiMauro and Schon.141 Briefly, the mutation must be
present in cases significantly more than asymptomatic controls; if hetero-
plasmic, the proportion of mutated mtDNA must be higher in patients
compared with controls (and subsequently higher in clinically affected
tissues compared with unaffected tissues). More importantly, the mutated
mtDNA must segregate with defined clinical outcome (described previ-
ously). Other criteria, such as evolutionary conservation must be inter-
preted with care, as very rare neutral variants (so-called ‘private
polymorphisms’) or homoplasmic changes (such as in LHON) may be
wrongly miss-classified using this approach.141 Assigning pathogenicity
to tRNA mutations is slightly more challenging; tRNA variants are
common; however, a small number of tRNA mutations are responsible
for a disproportionate majority of mitochondrial disease.77 McFarland
et al.77 provide a comprehensive scoring system which can be used to
accurately determine tRNA mutation pathogenicity.
Whole-exome sequencing (WES)142 has emerged as the preferred

method for identifying Mendelian disease genes, and is proving valuable
in the diagnostic evaluation of phenotypically and genetically heteroge-
neous disorders such as mitochondrial disease.95,143 Initially, candidate
mutations can be identified by prioritizing known mitochondrial genes,
such as the 1500 proposed in ‘MitoCarta’144 or Mitop2.145 Secondly,
WES can drive the discovery of novel mitochondrial disease genes or
provide a link to previous disease genes that demonstrate an overlapping
clinical phenotype.146–151 However, as with all new technologies, care
must be taken when interpreting WES data in novel disease genes.
Variants identified in poorly characterized genes will require extensive
biochemical and functional laboratory analysis to assign causality.
Additionally, WES is not wholly comprehensive, not capturing non-
coding or regulatory regions and often failing to sequence large portions
of the exome.142,152 However, as technology improves and bioinformatic
analysis becomes streamlined, WES is likely to become a major facet in
indentifying nuclear genes that affect mitochondrial function.

Managing mitochondrial disease

There are limited treatment options for patients with mitochondrial
diseases. The main emphasis is on disease prevention and the manage-
ment of complications. Effective genetic counselling, especially given a
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family history of mitochondrial disease, is crucial. However, the clinic-
al variability, coupled with the unpredictable inheritance of a hetero-
plasmic ‘mutant dose’ (through the bottleneck), makes a definite
diagnosis difficult.153,154

Empiric recurrence risks are available for common homoplasmic muta-
tions (i.e. for LHON), but genetic counselling for heteroplasmic mutations
is difficult because of the genetic bottleneck (described earlier). Increased
knowledge of the natural history of specific mitochondrial disorders has
informed clinical practice. Particular attention to cardiac, ophthalmologic-
al and endocrine complications (especially diabetes), can lead to prompt
supportive management.155 However, there are no specific disease-
modifying treatments at present, although some drugs show promise.156

An area that has had some in vitro and pre-clinical success is the develop-
ment of ‘gene therapies’.157 There are currently three strategies for applying
gene therapy to mitochondrial disease: (i) the rescue of an RC defect by ex-
pression of a ‘replacement’ gene product from the nucleus (so-called alloto-
pic and xenotpoic expression,158,159 (ii) the rescue of a primary
mitochondrial defect by importing ‘wild-type’ mtDNA into mitochondria
(so-called mtDNA transfection) and (iii) manipulation of the heteroplasmic
mtDNA balance (i.e. adjusting the wild-type:mutant type ratio), which can
be achieved by improving a patients exercise regime.160

More recently, and although in very early stages, allogenic haematopoi-
etic stem cell therapy has been successfully used to treat mitochondrial
neurogastrointestinal encephalomyopathy, but associated with high mor-
tality.161 Similarly, liver transplants in patients (typically children) suffer-
ing from MPV17-associated hepatocerebral mitochondrial depletion
syndrome have a poor prognosis.162

Pre-implantation genetic diagnosis can assist female heteroplasmic
mtDNA mutation carriers in determining the risk to their offspring,
assisting by preventing transmission of deleterious mtDNA.163,164

Briefly, embryos obtained after in vitro fertilization are analysed and only
those with very low-level mutant levels are transferred to the uterus.
However, these techniques are of little help to woman harbouring
intermediate-level heteroplasmic mtDNA mutations, where uncertainty
regarding the clinical mutation threshold remains.163

Advances, harnessing ‘pro-nuclear transfer’, have made significant steps
towards treating primary mitochondrial disease at a mtDNA level.165

Briefly, the technique involves the transfer of nDNA from a donor zygote
(from the mtDNA mutation carrier mother) to an enucleated recipient
zygote via fusion. The new ‘reconstructed zygote’ retains the nDNA from
the mother, but the mtDNA from a donor. More recently, a competing
group has attempted a similar technique, utilizing ‘spindle transfer’ of
nDNA to an enucleated donor.166 Unlike pro-nuclear transfer, nDNA iso-
lation occurs pre-fertilization, meaning once the technique is approved it
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can be integrated into established in vitro fertilization techniques.
However, caution is advised, as both pro-nuclear transfer and spindle
transfer would only benefit a minority of female mtDNAmutation carriers,
whereas prenatal diagnostic testing can be utilized for both all Mendelian
mitochondrial disorders and the majority of mtDNAmutations.163,167
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